Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Insect Sci ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594229

ABSTRACT

Honeybees and bumblebees play a crucial role as essential pollinators. The special gut microbiome of social bees is a key factor in determining the overall fitness and health of the host. Although bees harbor relatively simple microbial communities at the genus level, recent studies have unveiled significant genetic divergence and variations in gene content within each bacterial genus. However, a comprehensive and refined genomics-based taxonomic database specific to social bee gut microbiomes remains lacking. Here, we first provided an overview of the current knowledge on the distribution and function of social bee gut bacteria, as well as the factors that influence the gut population dynamics. We then consolidated all available genomes of the gut bacteria of social bees and refined the species-level taxonomy, by constructing a maximum-likelihood core genome phylogeny and calculating genome-wide pairwise average nucleotide identity. On the basis of the refined species taxonomy, we constructed a curated genomic reference database, named the bee gut microbe genome sequence database (BGM-GDb). To evaluate the species-profiling performance of the curated BGM-GDb, we retrieved a series of bee gut metagenomic data and inferred the species-level composition using metagenomic intra-species diversity analysis system (MIDAS), and then compared the results with those obtained from a prebuilt MIDAS database. We found that compared with the default database, the BGM-GDb excelled in aligned read counts and bacterial richness. Overall, this high-resolution and precise genomic reference database will facilitate research in understanding the gut community structure of social bees.

2.
Food Sci Anim Resour ; 44(1): 119-131, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38229852

ABSTRACT

BIOVITA 3 bacterial species (BIOVITA 3), a probiotic blend powder containing Clostridium butyricum IDCC 1301, Weizmannia coagulans IDCC 1201 and Bacillus subtilis IDCC 1101, has been used as a food ingredient for gut health. However, its efficacy in improving constipation has not been reported. Therefore, we aimed to investigate the functional effects of oral administration of BIOVITA 3 as well as its component strains alone (at 1.0×109 CFU/day) in Sprague-Dawley (SD) rats with loperamide-induced constipation. The study included fecal analysis, gastrointestinal transit ratio, histopathological analysis, short chain fatty acids (SCFAs), and metagenome analysis. As results, the BIOVITA 3 group showed significant improvements in fecal number, water content, gastrointestinal transit ratio, and thickening of the mucosal layer. In the SCFAs analysis, all probiotic-treated groups showed an increase in total SCFAs compared to the loperamide-constipated group. Changes in microbial abundance and the diversity index of three groups (normal, constipated, and BIOVITA 3) were also defined. Of these, the BIOVITA 3 showed a significant improvement in loperamide-constipated SD-rats. This study suggests the possibility that BIOVITA 3 can be applied as an ingredient in functional foods to relieve constipation.

3.
Braz. j. biol ; 842024.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469300

ABSTRACT

Abstract Fish is the main source of animal protein for human diet. The aim of this study was to find out prevalence of pathogenic bacteria of two selected economically important fish of Pakistan namely Mahseer (Tor putitora) and Silver carp (Hypophthalmichthys molitrix). Live fish samples from hatcheries and dead fish samples from different markets of study area were randomly collected. The fish samples were analyzed for isolation, identification and prevalence of bacteria. The isolated bacteria from study fish were identified through biochemical test and about 10 species of pathogenic bacteria were identified including the pathogenic bacteria to human and fish namely, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus iniae, Serratia spp. Citrobacter spp. Stenotrophomonas spp. Bacillus spp. and Salmonella spp. The bacterial percentage frequency of occurrence in Silver carp and Mahseer fish showed Pseudomonas aeruginosa 21.42%, Staphylococcus epidermidis 17.85%, Escherichia coli 11.90%, Staphylococcus aureus 9.52%, Citrobacter spp. 9.52%, Serratia spp. 8.33%, Streptococcus iniae 7.14%, Stenotrophomonas spp. 5.95%, Bacillus spp. 4.76% and Salmonella spp. 3.57%. The study revealed that Fish samples of Mahseer and Silver carp that were collected from markets have found more isolates (10 bacterial species) than did the fresh fish pond samples (03 bacterial species) of hatcheries. The occurrence of pathogenic bacteria in study fish showed risk factor for public health consumers.


Resumo O peixe é a principal fonte de proteína animal para a alimentação humana. O objetivo deste estudo foi descobrir a prevalência de bactérias patogênicas de dois peixes economicamente importantes selecionados do Paquistão, nomeadamente Mahseer (Tor putitora) e carpa prateada (Hypophthalmichthys molitrix). Amostras de peixes vivos de incubatórios e amostras de peixes mortos de diferentes mercados da área de estudo foram coletadas aleatoriamente. As amostras de peixes foram analisadas quanto ao isolamento, identificação e prevalência de bactérias. As bactérias isoladas dos peixes do estudo foram identificadas através de testes bioquímicos e cerca de 10 espécies de bactérias patogênicas foram identificadas incluindo as bactérias patogênicas para humanos e peixes, nomeadamente, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus iniae, Serratia spp. Citrobacter spp. Stenotrophomonas spp. Bacillus spp. e Salmonella spp. A porcentagem de freqüência de ocorrência bacteriana em carpa prateada e peixes Mahseer mostrou Pseudomonas aeruginosa 21,42%, Staphylococcus epidermidis 17,85%, Escherichia coli 11,90%, Staphylococcus aureus 9,52%, Citrobacter spp. 9,52%, Serratia spp. 8,33%, Streptococcus iniae 7,14%, Stenotrophomonas spp. 5,95%, Bacillus spp. 4,76% e Salmonella spp. 3,57%. O estudo revelou que as amostras de peixes de Mahseer e carpa prateada coletadas nos mercados encontraram mais isolados (10 espécies bacterianas) do que as amostras de peixes frescos (03 espécies bacterianas) de incubatórios. A ocorrência de bactérias patogênicas nos peixes do estudo apresentou fator de risco para consumidores de saúde pública.

4.
Braz. j. biol ; 84: e251747, 2024. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1355878

ABSTRACT

Abstract Fish is the main source of animal protein for human diet. The aim of this study was to find out prevalence of pathogenic bacteria of two selected economically important fish of Pakistan namely Mahseer (Tor putitora) and Silver carp (Hypophthalmichthys molitrix). Live fish samples from hatcheries and dead fish samples from different markets of study area were randomly collected. The fish samples were analyzed for isolation, identification and prevalence of bacteria. The isolated bacteria from study fish were identified through biochemical test and about 10 species of pathogenic bacteria were identified including the pathogenic bacteria to human and fish namely, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus iniae, Serratia spp. Citrobacter spp. Stenotrophomonas spp. Bacillus spp. and Salmonella spp. The bacterial percentage frequency of occurrence in Silver carp and Mahseer fish showed Pseudomonas aeruginosa 21.42%, Staphylococcus epidermidis 17.85%, Escherichia coli 11.90%, Staphylococcus aureus 9.52%, Citrobacter spp. 9.52%, Serratia spp. 8.33%, Streptococcus iniae 7.14%, Stenotrophomonas spp. 5.95%, Bacillus spp. 4.76% and Salmonella spp. 3.57%. The study revealed that Fish samples of Mahseer and Silver carp that were collected from markets have found more isolates (10 bacterial species) than did the fresh fish pond samples (03 bacterial species) of hatcheries. The occurrence of pathogenic bacteria in study fish showed risk factor for public health consumers.


Resumo O peixe é a principal fonte de proteína animal para a alimentação humana. O objetivo deste estudo foi descobrir a prevalência de bactérias patogênicas de dois peixes economicamente importantes selecionados do Paquistão, nomeadamente Mahseer (Tor putitora) e carpa prateada (Hypophthalmichthys molitrix). Amostras de peixes vivos de incubatórios e amostras de peixes mortos de diferentes mercados da área de estudo foram coletadas aleatoriamente. As amostras de peixes foram analisadas quanto ao isolamento, identificação e prevalência de bactérias. As bactérias isoladas dos peixes do estudo foram identificadas através de testes bioquímicos e cerca de 10 espécies de bactérias patogênicas foram identificadas incluindo as bactérias patogênicas para humanos e peixes, nomeadamente, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus iniae, Serratia spp. Citrobacter spp. Stenotrophomonas spp. Bacillus spp. e Salmonella spp. A porcentagem de freqüência de ocorrência bacteriana em carpa prateada e peixes Mahseer mostrou Pseudomonas aeruginosa 21,42%, Staphylococcus epidermidis 17,85%, Escherichia coli 11,90%, Staphylococcus aureus 9,52%, Citrobacter spp. 9,52%, Serratia spp. 8,33%, Streptococcus iniae 7,14%, Stenotrophomonas spp. 5,95%, Bacillus spp. 4,76% e Salmonella spp. 3,57%. O estudo revelou que as amostras de peixes de Mahseer e carpa prateada coletadas nos mercados encontraram mais isolados (10 espécies bacterianas) do que as amostras de peixes frescos (03 espécies bacterianas) de incubatórios. A ocorrência de bactérias patogênicas nos peixes do estudo apresentou fator de risco para consumidores de saúde pública.


Subject(s)
Humans , Animals , Carps , Pakistan , Bacteria , Ponds , Incidence
5.
Diagn Microbiol Infect Dis ; 108(1): 116110, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37924747

ABSTRACT

When rare bacterial species are identified in blood cultures, determining the clinical significance is sometimes difficult. This study aimed to analyze the clinical significance of rare bacterial species detected in blood cultures using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOFMS) by comparing their contamination rates with those of common species. We retrospectively analyzed medical records of adult patients with positive blood cultures at Kyoto City Hospital from 2014 to 2022. Rare species were defined by low detection rates and few PubMed reports. Of 4880 microorganisms identified from 3441 individuals, 1150 (23.6%) were classified as contamination. Meanwhile, 24 rare microorganisms were identified, of which 14 (58.3%) were classified as contamination, which was significantly higher than common species (odds ratio 4.56, 95% confidence Interval 1.88-11.50, P < 0.001). These findings may help in determining the clinical significance of rare bacterial species in blood cultures with few reported cases.


Subject(s)
Bacteria , Blood Culture , Adult , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Retrospective Studies
6.
Arch Microbiol ; 205(12): 377, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37940730

ABSTRACT

An isolate of a bacterium recovered from an endometrial biopsy failed to be identified by MALDI-TOF mass spectrometry and was subjected to 16S rRNA sequencing. The obtained sequence was compared by BLASTn against the NCBI database, which revealed that the most closely related species was Cellulomonas hominis and Cellulomonas pakistanensis, with 98.85% and 98.45% identity, respectively. Phenotypic characterisation and genome sequencing were performed. The isolate was facultative anaerobic, gram-positive, motile, non-spore forming, and rod-shaped. Cell wall fatty acid profiling revealed that 12-methyl-tetradecanoic acid was the most abundant fatty acid (36%). The genome size was 4.25 Mbp with a G + C content of 74.8 mol%. Genomic comparison of species closely related to this strain showed that all digital DNA-DNA hybridisation (dDDH) and mean orthologous nucleotide identity (OrthoANI) values were below published species thresholds (70% and 95-96%, respectively). Based on these data, we conclude that this isolate represents a new bacterial species belonging to the family Cellulomonadaceae and the phylum Actinomycetota. We propose the name Cellulomonas endometrii sp. nov. The type strain is Marseille-Q7820T (= CSUR Q7820 = CECT 30716).


Subject(s)
Cellulomonas , Cellulomonas/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Phylogeny , DNA, Bacterial/genetics , Bacterial Typing Techniques , Fatty Acids/analysis
7.
Lett Appl Microbiol ; 76(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37793793

ABSTRACT

The accurate quantification of viable pathogens in food is crucial for ensuring food safety. This study mainly aimed to investigate the quantification of viable pathogens using PMA-qPCR and RT-qPCR, taking into account bacterial species, food matrices, and inactivation methods. The detection limit of PMA-qPCR for Salmonella serovars in simple matrices, such as culture broth, lake, or tap water, was found to be 102 cells per ml. Regarding the detection of Staphylococcus aureus and Escherichia coli in culture broth, as well as Salmonella in more complex matrices, such as juices and lab-made broth, both methods exhibited a detection limit of 103 cells per ml. Besides that, in adverse situations, there was a risk of overestimating the number of viable pathogens using PMA-qPCR. In addition, a conspicuous discrepancy between the results of PMA-qPCR/RT-qPCR and those of the plate counting assay was observed when Salmonella was exposed to isopropanol, H2O2, NaClO, sonication, or thermosonication. This suggests that it may survive in a viable but non-culturable state and poses a challenge for accurate quantification of viable cells using plate counting assay. Therefore, the results obtained by RT-qPCR were more objective compared to PMA-qPCR due to potential influences from bacteria species, surrounding media, and inactivation methods.


Subject(s)
Escherichia coli , Hydrogen Peroxide , Propidium , Real-Time Polymerase Chain Reaction/methods , Escherichia coli/genetics , Staphylococcus aureus/genetics , Salmonella/genetics , Azides , Microbial Viability
8.
Infect Dis Now ; 53(8S): 104795, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37802212

ABSTRACT

This section summarizes empirical antimicrobial treatment for the less frequent bacterial species less frequently causing infection, whether it be community-acquired or healthcare-associated. It specifies their role in different diseases and the recommended antibiotics, taking into account their natural and most common acquired resistance and the relevant pharmacokinetic-pharmacodynamic parameters. The advice of an infectious disease specialist or microbiologist is frequently needed.


Subject(s)
Anti-Infective Agents , Humans , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Health Facilities
9.
Nutrients ; 15(18)2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37764709

ABSTRACT

Antibiotic treatment can lead to a loss of diversity of gut microbiota and may adversely affect gut microbiota composition and host health. Previous studies have indicated that the recovery of gut microbes from antibiotic-induced disruption may be guided by specific microbial species. We expect to predict recovery or non-recovery using these crucial species or other indices after antibiotic treatment only when the gut microbiota changes. This study focused on this prediction problem using a novel ensemble learning framework to identify a set of common and reasonably predictive recovery-associated bacterial species (p-RABs), enabling us to predict the host microbiome recovery status under broad-spectrum antibiotic treatment. Our findings also propose other predictive indicators, suggesting that higher taxonomic and functional diversity may correlate with an increased likelihood of successful recovery. Furthermore, to explore the validity of p-RABs, we performed a metabolic support analysis and identified Akkermansia muciniphila and Bacteroides uniformis as potential key supporting species for reconstruction interventions. Experimental results from a C57BL/6J male mouse model demonstrated the effectiveness of p-RABs in facilitating intestinal microbial reconstitution. Thus, we proved the reliability of the new p-RABs and validated a practical intervention scheme for gut microbiota reconstruction under antibiotic disturbance.

10.
J Fluoresc ; 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37597134

ABSTRACT

Rapid identification of bacterial species in patient samples is essential for the treatment of infectious diseases and the economics of health care. In this study, we investigated an algorithm to improve the accuracy of bacterial species identification with fluorescence spectroscopy based on autofluorescence from bacteria, and excitation wavelengths suitable for identification. The diagnostic accuracy of each algorithm for ten bacterial species was verified in a machine learning classifier algorithm. The three machine learning algorithms with the highest diagnostic accuracy, extra tree (ET), logistic regression (LR), and multilayer perceptron (MLP), were used to determine the number and wavelength of excitation wavelengths suitable for the diagnosis of bacterial species. The key excitation wavelengths for the diagnosis of bacterial species were 280 nm, 300 nm, 380 nm, and 480 nm, with 280 nm being the most important. The median diagnostic accuracy was equivalent to that of 200 excitation wavelengths when two excitation wavelengths were used for ET and LR, and three excitation wavelengths for MLP. These results demonstrate that there is an optimum wavelength range of excitation wavelengths required for spectroscopic measurement of bacterial autofluorescence for bacterial species identification, and that measurement of only a few wavelengths in this range is sufficient to achieve sufficient accuracy for diagnosis of bacterial species.

12.
Antibiotics (Basel) ; 12(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37370285

ABSTRACT

Antimicrobial resistance (AMR) has become a major healthcare concern having a rising incidence, especially in pediatric patients who are more susceptible to infections. The aim of our study was to analyze the bacterial species isolated from patients admitted to our tertiary hospital and their AMR profiles. We conducted a retrospective observational study by examining the bacterial cultures collected from pediatric patients admitted to our hospital over a period of one year. We identified the most common bacterial species from 1445 clinical isolates and their AMR patterns using standard microbiological techniques. Our analysis revealed that the most frequently isolated bacterial species were Escherichia coli (23.73%), Staphylococcus aureus (15.64%), Klebsiella species (12.04%), and Pseudomonas species (9.96%). Additionally, these species exhibited varying levels of resistance to commonly used antibiotics. Notably, we observed high rates of resistance among Gram-negative bacteria, including extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species. Among Gram-positive bacteria, we observed a high level of methicillin-resistant Staphylococcus aureus. Our findings highlight the urgent need for effective antibiotic management programs and infection control measures to address the rising incidence of AMR in pediatric hospitals. Further research is needed to identify the mechanisms of resistance in these bacterial species and to develop new strategies for preventing and treating infections caused by antibiotic-resistant bacteria in pediatric patients.

13.
Microb Genom ; 9(4)2023 04.
Article in English | MEDLINE | ID: mdl-37052581

ABSTRACT

Violacein is a water-insoluble violet pigment produced by various Gram-negative bacteria. The compound and the bacteria that produce it have been gaining attention due to the antimicrobial and proposed antitumour properties of violacein and the possibility that strains producing it may have broad industrial uses. Bacteria that produce violacein have been isolated from diverse environments including fresh and ocean waters, glaciers, tropical soils, trees, fish and the skin of amphibians. We report here the isolation and characterization of six violacein-producing bacterial strains and three non-violacein-producing close relatives, each isolated from either an aquatic environment or moist food materials in northern California, USA. For each isolate, we characterized traditional phenotypes, generated and analysed draft genome sequences, and carried out multiple types of taxonomic, phylogenetic and phylogenomic analyses. Based on these analyses we assign putative identifications to the nine isolates, which include representatives of the genera Chromobacterium, Aquitalea, Iodobacter, Duganella, Massilia and Janthinobacterium. In addition, we discuss the utility of various metrics for taxonomic assignment in these groups including average nucleotide identity, whole genome phylogenetic analysis and extent of recent homologous recombination using the software program PopCOGenT.


Subject(s)
Anti-Infective Agents , Bacteria , Animals , Phylogeny , Base Sequence , Gram-Negative Bacteria
14.
Clin Microbiol Infect ; 29(2): 190-199, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35623578

ABSTRACT

OBJECTIVES: Matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is a widely used method for bacterial species identification. Incomplete databases and mass spectral quality (MSQ) still represent major challenges. Important proxies for MSQ are the number of detected marker masses, reproducibility, and measurement precision. We aimed to assess MSQs across diagnostic laboratories and the potential of simple workflow adaptations to improve it. METHODS: For baseline MSQ assessment, 47 diverse bacterial strains, which are challenging to identify by MALDI-TOF MS, were routinely measured in 36 laboratories from 12 countries, and well-defined MSQ features were used. After an intervention consisting of detailed reported feedback and instructions on how to acquire MALDI-TOF mass spectra, measurements were repeated and MSQs were compared. RESULTS: At baseline, we observed heterogeneous MSQ between the devices, considering the median number of marker masses detected (range = [2-25]), reproducibility between technical replicates (range = [55%-86%]), and measurement error (range = [147 parts per million (ppm)-588 ppm]). As a general trend, the spectral quality was improved after the intervention for devices, which yielded low MSQs in the baseline assessment as follows: for four out of five devices with a high measurement error, the measurement precision was improved (p-values <0.001, paired Wilcoxon test); for six out of ten devices, which detected a low number of marker masses, the number of detected marker masses increased (p-values <0.001, paired Wilcoxon test). DISCUSSION: We have identified simple workflow adaptations, which, to some extent, improve MSQ of poorly performing devices and should be considered by laboratories yielding a low MSQ. Improving MALDI-TOF MSQ in routine diagnostics is essential for increasing the resolution of bacterial identification by MALDI-TOF MS, which is dependent on the reproducible detection of marker masses. The heterogeneity identified in this external quality assessment (EQA) requires further study.


Subject(s)
Bacteria , Laboratories , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Reproducibility of Results , Workflow
15.
J Oral Microbiol ; 15(1): 2144614, 2023.
Article in English | MEDLINE | ID: mdl-36407280

ABSTRACT

Background: Infective endocarditis (IE) is an uncommon disease with high morbidity and mortality rates, which often develops from oral bacterial species entering circulation. Objective: We compared oral microbiome profiles of three groups: IE patients (N  9 patients; n = 27 samples), disease controls at risk for IE (N = 28; n = 84), and healthy controls (N = 37; n = 111). Bacterial species in IE patients' blood cultures were identified for comparison with matched oral samples. Design: Oral microbiome profiles were obtained from buccal mucosa, saliva, and tongue samples for all three groups and from sub- and supra-gingival plaque samples of the IE group (N = 9; n = 16) and disease controls (N = 28; n = 54). Alpha- and beta-diversities were determined based on relative abundance data. Discriminative species were identified by LEfSe, post hoc Mann-Whitney, and ROC analyses. Identity of the bacterial species in IE patients' blood cultures was confirmed by 16S-rRNA gene Sanger sequencing. Results: Alpha- and beta-diversities differed between groups. Discriminative IE-associated species were identified, e.g. Haemophilus parainfluenzae and Streptococcus sanguinis. Two blood isolates were Staphylococcus aureus, also identified in one matched saliva sample. Streptococcus mutans was present in one patient's plaque samples and blood culture. Conclusions: Oral microbiomes of IE, non-IE disease controls, and healthy controls differed significantly. A better understanding of IE-related bacterial-host interactions is warranted.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 2): 122062, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36351311

ABSTRACT

Deep-UV resonance Raman spectroscopy (UVRR) allows the classification of bacterial species with high accuracy and is a promising tool to be developed for clinical application. For this attempt, the optimization of the wavenumber calibration is required to correct the overtime changes of the Raman setup. In the present study, different polymers were investigated as potential calibration agents. The ones with many sharp bands within the spectral range 400-1900 cm-1 were selected and used for wavenumber calibration of bacterial spectra. Classification models were built using a training cross-validation dataset that was then evaluated with an independent test dataset obtained after 4 months. Without calibration, the training cross-validation dataset provided an accuracy for differentiation above 99 % that dropped to 51.2 % after test evaluation. Applying the test evaluation with PET and Teflon calibration allowed correct assignment of all spectra of Gram-positive isolates. Calibration with PS and PEI leads to misclassifications that could be overcome with majority voting. Concerning the very closely related and similar in genome and cell biochemistry Enterobacteriaceae species, all spectra of the training cross-validation dataset were correctly classified but were misclassified in test evaluation. These results show the importance of selecting the most suitable calibration agent in the classification of bacterial species and help in the optimization of the deep-UVRR technique.


Subject(s)
Polymers , Spectrum Analysis, Raman , Calibration , Spectrum Analysis, Raman/methods , Vibration , Reference Standards
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-988508

ABSTRACT

Objective @#To compare the disinfection effect of 3% (v/v) hydrogen peroxide and 500 mg/L chlorine-containing disinfectants in the independent waterway of a periodontal ultrasonic scaler to provide a reference for clinical waterway disinfection management in stomatology departments.@*Methods @#The 18 ultrasonic scalers were randomly divided into 3 groups of 6 units: the control group, experimental group 1 (3% hydrogen peroxide disinfectant group), and experimental group 2 (500 mg/L chlorine-containing disinfectant group). The replaceable parts of the independent waterway pipes of the 3 groups of ultrasonic scalers were replaced, and the water supply was supplied with sterile distilled water (DW). In the control group, special treatment was not applied to the nonreplaceable pipe part. In experimental group 1, the 3% hydrogen peroxide was used to disinfect nonreplaceable pipelines. In experimental group 2, the nonreplaceable part was disinfected with the 500 mg/L chlorine-containing disinfectant. The water sample was taken from the outlet of the scaler working part in the three groups for monitoring before disinfection, immediately after disinfection and 10 consecutive days after disinfection. Bacteria in the water samples were cultured for the colony counts. Then, the bacterial culture data were compared between groups. The qualified criterion of the water sample was that the number of bacterial colonies was less than or equal to 100 CFU/mL. After disinfection, a bacterial species mass spectrometry identification analysis was carried out when the number of bacterial colonies in each group exceeded the standard for the first time. Biofilms from the inner wall of the tube in the three groups were observed under an electron microscope on the 10th day after disinfection.@*Results @#There were no significant differences between the three groups before disinfection (F = 2.549, P = 0.111). The number of bacterial colonies in the spout of 6 scalers in the control group all exceeded the standard, and three kinds of bacteria were cultured: Sphingomonas melonis, Herbaspirillum huttiense, and Ralstonia pickettii. Compared with those in the control group, the number of bacterial colonies in experimental group 1 decreased significantly for 1-2 days after disinfection (P<0.05) and reached the standard. On the 3rd day after disinfection, the number of bacterial colonies of group 1 increased rapidly and exceeded the standard, and three kinds of bacteria were cultured: Sphingomonas, Herbaspirillum huttiense, and Ralstonia pickettii. For experimental group 2, the number of bacterial colonies decreased significantly compared to the control group on Days 1 to 6 after disinfection, but the number of bacterial colonies increased slightly from the 7th day after disinfection and exceeded the standard. Two kinds of bacteria were cultured: Herbaspirillum huttiense and Ralstonia pickettii. The average number of bacterial colonies 10-day after disinfection in experimental group 2 was lower than that in experimental group 1(P<0.001). Under an electron microscope, the biofilm thickness of the two experimental groups was significantly lower than that of the control group. @* Conclusion @# There is water pollution in the independent waterway of a periodontal ultrasound scaler. Three percent hydrogen peroxide and 500 mg/L chlorine disinfectant both have effective disinfection effects on the outlet water of scalers, and the effect of 500 mg/L chlorine disinfectant is better than that of 3% hydrogen peroxide. The use of 3% hydrogen peroxide to disinfect periodontal ultrasound scaler-independent waterways is recommended for disinfection every other day, and disinfection once a week is recommended for the use of 500 mg/L chlorine disinfectant.

18.
Front Microbiol ; 14: 1323346, 2023.
Article in English | MEDLINE | ID: mdl-38260892

ABSTRACT

Background: Variation in diversity and composition of saliva microbiota has been linked to weight status, but findings have been inconsistent. Focusing on clinically relevant conditions such as central obesity and using advanced sequencing techniques might fill in the gaps of knowledge. Aims: We investigated saliva microbiota with shallow metagenome sequencing in children with (n = 14) and without (n = 36) central obesity. Additionally, we examined the role of habitual food consumption on microbial enzymatic repertoire. Methods: Data comprised 50 children (50% male) with a mean age of 14.2 (SD 0.3) years, selected from the Finnish Health in Teens (Fin-HIT) cohort. Dietary scores for consumption frequency of sweet treats (STI), dairy products (DCI) and plants (PCI) were derived based on a self-administered food frequency questionnaire. Central obesity was defined based on waist-height ratio using the cut-off 0.5. Saliva samples were subjected to whole-metagenome shotgun sequencing, and taxonomic and functional profiling was achieved with METAnnotatorX2 bioinformatics platform. Results: Groups had an average 20 (95% CI 14-27) cm difference in waist circumference. We identified the lack of Pseudomonas guguagenesis and Prevotella scopos, oulorum and oris as putative biomarkers associated with central obesity and observed a total of 16 enzymatic reactions differing between the groups. DCI was associated with the highest number of enzyme profiles (122), followed by STI (60) and DCI (25) (Pearson correlation p < 0.05). Intriguingly, STI showed a high positive/negative correlation ratio (5.09), while DCI and PCI showed low ratios (0.54 and 0.33, respectively). Thus, the main driver of enzymatic reactions was STI, and the related pathways involved nitrate metabolism induced by Haemophilus parainfluenzae and Veilonella dispar among others. Conclusion: Clinically relevant differences in central obesity were only modestly reflected in the composition of saliva microbiota. Habitual consumption of sweet treats was a strong determinant of enzymatic reactions of saliva microbiota in children with and without central obesity. The clinical relevance of these findings warrants further studies.

19.
New Microbiol ; 45(4): 278-283, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36190371

ABSTRACT

As already known, orthodontic treatment presents a factor of plaque retention, promoting an increase of bacterial growth in the oral cavity. Nevertheless, after orthodontic debonding an alteration of the previous microbiological status may occur. The present study was designed to assess variations among six bacterial species in the oral cavity and the status of oral health after orthodontic debonding. At the end of the fixed orthodontic treatment, 30 patients were divided into three groups based on the type of retention: I - 10 patients were treated with upper and lower fixed retention devices, II - 10 with upper and lower removable retention devices, and III - 10 with lower fixed and upper removable retention devices. To assess the alterations of oral microbiota after orthodontic debonding, two salivary swabs were collected for each individual: the first immediately after debonding (T0) and the other one 6 weeks later (T1). Six species, the ones most correlated with the development of caries and periodontal disease, were selected for microbiological analysis with Real-time PCR: Streptococcus mutans, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Fusobacterium nucleatum. Furthermore, in order to correlate the microbiological outcomes with the clinical condition, oral health indexes at T0 and T1 were assessed for all patients. Six weeks after debonding, the salivary levels of the bacteria investigated tend to decrease and the values of the oral health indexes tend to improve with all types of treatment considered (p<.05). Salivary bacteria levels and oral health are similarly influenced by fixed and/or removable orthodontic retentions.


Subject(s)
Periodontal Diseases , Pharynx , Humans , Porphyromonas gingivalis , Fusobacterium nucleatum , Streptococcus mutans , Aggregatibacter actinomycetemcomitans
20.
Front Microbiol ; 13: 983358, 2022.
Article in English | MEDLINE | ID: mdl-36090094

ABSTRACT

Quercetin has a wide range of biological properties that can be used to prevent or decrease particular inflammatory diseases. In this study, we aimed to investigate the gene expression profile and metabolic pathway of the gut microbiota of an antibiotic-treated mouse model administered quercetin. Blood, feces, and intestinal tissue samples were collected and metagenomic sequencing, enzyme-linked immunosorbent assay, and western blot analysis were used to detect variations. The results showed that the quercetin-treated group exhibited increased levels of health beneficial bacterial species, including Faecalibaculum rodentium (103.13%), Enterorhabdus caecimuris (4.13%), Eggerthella lenta (4%), Roseburia hominis (1.33%), and Enterorhabdus mucosicola (1.79%), compared with the model group. These bacterial species were positively related to butyrate, propionate, and intestinal tight junction proteins (zonula occludens-1 and occludin) expression, but negatively related to serum lipopolysaccharide and tumor necrosis factor-α level. In addition, the metabolic pathway analysis showed that dietary quercetin significantly enhanced spliceosomes (111.11%), tight junctions (62.96%), the citrate cycle (10.41%), pyruvate metabolism (6.95%), and lysine biosynthesis (5.06%), but decreasing fatty acid biosynthesis (23.91%) and N-glycan (7.37%) biosynthesis. Furthermore, these metabolic pathway changes were related to relative changes in the abundance of 10 Kyoto Encyclopedia of Genes and Genomes genes (K00244, K00341, K02946, K03737, K01885, k10352, k11717, k10532, K02078, K01191). In conclusion, dietary quercetin increased butyrate-producing bacterial species, and the acetyl-CoA-mediated increased butyrate accelerated carbohydrate, energy metabolism, reduced cell motility and endotoxemia, and increased the gut barrier function, thereby leading to healthy colonic conditions for the host.

SELECTION OF CITATIONS
SEARCH DETAIL
...